Abstract

Calibration of CCD arrays is commonly conducted using dark frames. Non-absolute calibration techniques only measure the relative response of the detectors. For absolute calibration to be achieved, a second calibration is sometimes utilized by looking at sources with known radiances. A process like this can be used to calibrate photodetectors if a calibration source is available and sensor time can be spared to perform the operation. A previous attempt at creating a procedure for calibrating a photodetector using the underlying Poisson nature of the photodetection statistics relied on a linear model. This effort produced the statistically applied non-uniformity calibration algorithm, which demonstrated an ability to relate the measured signal with the true radiance of the source. Reliance on a completely linear model does not allow for non-linear behaviors to be described, thus potentially producing poor photocalibration over large dynamic ranges. In this paper, a photocalibration procedure is defined that requires only first and second moments of the measurements and allows the response to be modeled using a non-linear function over the dynamic range of the detector. The technique is applied to image data containing a light source measured with different integration times showing that the non-linear technique achieves significant improvement over the linear model over a large dynamic range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.