Abstract

The stress–strain curves and mechanical properties of Shuangjiangkou granite were obtained using five groups of conventional triaxial tests under various confining pressures using MTS815 rock test equipment. From the microscale, mesoscale, and macroscale perspectives, four types of mechanisms that contribute to energy dissipation during granite deformation were investigated. Based on the energy dissipation ratio, a new approach for estimating crack closure stress and damage stress is proposed. The energy dissipation ratio was substituted into the Weibull distribution function, and then a new nonlinear statistical damage constitutive model of granite based on the energy dissipation ratio was constructed after Biot’s theory was modified per the Lemaitre strain equivalence principle. By comparing experimental data with theoretical values estimated by the model, the model’s rationality and correctness were confirmed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.