Abstract

In this paper, a nonlinear state observer control strategy is developed for projective self-synchronization of the fractional-order chaotic attractors of a permanent magnet synchronous motor (PMSM) system. The mathematical model of PMSM system in a smooth fractional-order form is derived by using the fractional derivative theory. A state observer control design can achieve the full-state projective synchronization of the fractional-order PMSM (FO-PMSM) system without the limitation of partial-linearity. Global stability and asymptotic synchronization between the outputs of drive system and response system can be obtained. Simulation results are provided to demonstrate the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.