Abstract

A strictly nonlinear state feedback control law is designed for an aeroelastic system to eliminate subcritical limit cycle oscillations. Numerical continuation techniques and harmonic balance methods are employed to generate analytical estimates of limit cycle oscillation commencement velocity and its sensitivity with respect to the introduced control parameters. The obtained estimates are used in a multiobjective optimization framework to generate optimal control parameters which maximize the limit cycle oscillation commencement velocity while minimizing the control cost. Numerical simulations are used to show that the assumed nonlinear state feedback law with the optimal control parameters successfully eliminates any existing subcritical limit cycle oscillations by converting it to supercritical limit cycle oscillations, thereby guaranteeing safe operation of the system in its flight envelope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.