Abstract

In this paper, the authors have presented an approach for designing a nonlinear observer to estimate the states of a noisy dynamic system. The nonlinear observer design procedure involves representation of the nonlinear system as a family of local linear state space models; the state estimator for each linear local state space model uses standard Kalman filter theory and then a global state estimator is developed that combines the local state estimators. The effectiveness of the proposed fuzzy Kalman filter (nonlinear observer) has been demonstrated on a continuously stirred tank reactor (CSTR) process. The performances of the fuzzy Kalman filter (FKF) and the extended Kalman filter (EKF) have been compared in the presence of initial model/plant mismatch and input and output disturbances. Simulation studies also include an estimation of reactor concentration (inferential measurement), based only on the measured variable temperature of the reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.