Abstract

Real-time nonlinear stabilization techniques are often limited by inefficient or intractable online and/or offline computations, or a lack guarantee for global stability. In this paper, we explore the use of Control Contraction Metrics (CCM) for nonlinear stabilization because it offers tractable offline computations that give formal guarantees for global stability. We provide a method to solve the associated online computation for a CCM controller - a pseudospectral method to find a geodesic. Through a case study of a stiff nonlinear system, we highlight two key benefits: (i) using CCM for nonlinear stabilization and (ii) rapid online computations amenable to real-time implementation. We compare the performance of a CCM controller with other popular feedback control techniques, namely the Linear Quadratic Regulator (LQR) and Nonlinear Model Predictive Control (NMPC). We show that a CCM controller using a pseudospectral approach for online computations is a middle ground between the simplicity of LQR and stability guarantees for NMPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call