Abstract
In this paper, the one-dimensional compressible Navier-Stokes system with outer pressure boundary conditions is investigated. Under some suitable assumptions, we prove that the specific volume and the temperature are bounded from below and above independently of time, and then give the local and global existence of strong solutions. Furthermore, we also obtain the convergence of the global strong solution to a stationary state and the nonlinearly stability of its convergence. It is worth noticing that all the assumptions imposed on the initial data are the same as Takeyuki Nagasawa [Japan.J.Appl.Math.(1988)]. Therefore, our work can be regarded as an improvement of the results of Takeyuki.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.