Abstract

In this paper, we investigate the stability of equilibrium points for the planar restricted equilateral four-body problem in the case that one particle of negligible mass is moving under the Newtonian gravitational attraction of three positive masses [Formula: see text], [Formula: see text] and [Formula: see text] (called primaries). These always lie at the vertices of an equilateral triangle (Lagrangian configuration) and move with constant angular velocity in circular orbits around their center of masses. We consider the case where all the primaries have unequal masses, and investigate the nonlinear stability (in the sense of Lyapunov) of the elliptic equilibrium for the specific values of the mass [Formula: see text] and [Formula: see text] of the primary, fixed on the horizontal axis. Moreover, the [Formula: see text][Formula: see text]:[Formula: see text][Formula: see text] four-order resonant cases are determined and the stability is investigated. In this study, Markeev’s theorem and Arnold’s theorem become key ingredients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.