Abstract

An important topic in the numerical analysis of Volterra integral equations is the stability theory. The main results known in the literature have been obtained on linear test equations or, at least, on nonlinear equations with convolution kernel. Here, we consider Volterra integral equations with Hammerstein nonlinearity, not necessarily of convolution type, and we study the error equation for Direct Quadrature methods with respect to bounded perturbations. For a class of Direct Quadrature methods, we obtain conditions on the stepsize h for the numerical solution to behave stably and we report numerical examples which show the robustness of this nonlinear stability theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.