Abstract

In this paper, we qualitatively study radial solutions of the semilinear elliptic equation Δu+un = 0 with u(0) = 1 and u′(0) = 0 on the positive real line, called the Emden–Fowler or Lane–Emden equation. This equation is of great importance in Newtonian astrophysics and the constant n is called the polytropic index. By introducing a set of new variables, the Emden–Fowler equation can be written as an autonomous system of two ordinary differential equations which can be analyzed using linear and nonlinear stability analysis. We perform the study of stability by using linear stability analysis, the Jacobi stability analysis (Kosambi–Cartan–Chern-theory) and the Lyapunov function method. Depending on the values of n these different methods yield different results. We identify a parameter range for n where all three methods imply stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.