Abstract

In this article, the nonlinear analysis of free vibrations, dynamic stability, and rotational dynamics of rotating annular circular thin plates, made of functionally graded material (FGM), is studied. Based on classical plate theory, von Karman’s nonlinear plate theory, and assuming the FGM mechanical properties vary in the radial direction, the governing equations of motion are obtained by direct use of Newton’s laws. A 1-D differential quadrature is used to solve the governing equations determining the natural frequencies, corresponding transverse mode shapes, and the critical speeds of rotation. The accuracy and convergence of the method are studied by comparing the results with the similar results whenever available in the literature. The influence of different parameters such as inner-to-outer radii ratio, thickness-to-outer radius ratio, graded index, angular velocity of the plate, and different boundary conditions on the natural frequencies of FG rotating plate are demonstrated by numerical examples. It is shown that fabricating a rotating disk with FGM can lead to an increase in its critical speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.