Abstract

The cable tower is the bearing component of long-span suspension bridges, and its structure is very high and bear large force, which determines the stability and is the key of safety control. As for the height of the main tower of a long-span suspension bridge up to 195.3 m, the finite element software ANSYS is used to establish a three-dimensional finite element model (FEM), and the effects of geometric nonlinearity and material nonlinearity on the stability of the main tower are analyzed. The calculation results show that geometrical nonlinearity and material defects have significant influence on the main tower stability, and the nonlinear stability should be considered under wind load in the design calculation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call