Abstract

The development of spontaneous stationary equilibrium patterns on metallic or semiconductor solid surfaces during ion-sputtered erosion at normal incidence is investigated by means of various weakly nonlinear stability analyses applied to the appropriate governing equation for this phenomenon. In particular, that process can be represented by a damped Kuramoto-Sivashinsky nonlinear partial differential time-evolution equation for the interfacial deviation from a planar surface which includes a deterministic ion-bombardment arrival term and is defined on an unbounded spatial domain. The etching of coherent ripples, rhombic arrays of rectangular mounds or pits, and hexagonal lattices of nanoscale quantum dots or holes during this erosion process is based upon the interplay between roughening caused by ion sputtering and smoothing due to surface diffusion. Then, the theoretical predictions from these analyses are compared with both relevant experimental evidence and numerical simulations as well as placed in the context of some recent pattern formation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.