Abstract

The behaviour of an active polar suspension in a fluid film is analysed in the vanishing Reynolds number limit. We perform a detailed study of the transitions to spontaneously flowing steady states and their associated density variations. Beyond the onset of instability, we find a new transverse symmetry breaking of the flow generated in the film. This spontaneous symmetry breaking is observed despite symmetric boundary conditions (with respect to orientation) on either side of the film. We study this new phenomenon by means of numerical simulations and nonlinear theory, showing that it can be ascribed to the nonlinear coupling, characteristic of polar active systems, of the density gradients with the flow velocity and the orientation field. As such a theoretical analysis based on linear stability arguments typically used to identify phase boundaries is unable to describe it. An extension of the theory to allow for higher-density regimes is also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.