Abstract
A general theory is developed for describing the nonlinear relaxation of spin systems from a strongly nonequilibrium initial state, when, in addition, the sample is coupled to a resonator. Such processes are characterized by nonlinear stochastic differential equations. This makes these strongly nonequilibrium processes principally different from the spin relaxation close to an equilibrium state, which is represented by linear differential equations. The consideration is based on a realistic microscopic Hamiltonian including the Zeeman terms, dipole interactions, exchange interactions, and a single-site anisotropy. The influence of cross correlations between several spin species is investigated. The critically important function of coupling between the spin system and a resonant electric circuit is emphasized. The role of all main relaxation rates is analyzed. The phenomenon of self-organization of transition coherence in spin motion, from the quantum chaotic stage of incoherent fluctuations, is thoroughly described. Local spin fluctuations are found to be the triggering cause for starting the spin relaxation from an incoherent nonequilibrium state. The basic regimes of collective coherent spin relaxation are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.