Abstract
This paper proposes a distributed fixed-time multiagent control strategy for the frequency restoration, voltage regulation, state of charge balancing, and proportional reactive power sharing between photovoltaic battery systems distributed in a microgrid with communication time delays. First, the feedback linearization method is applied to find the direct relationships between explicit states and control inputs. Then, based on the model, the distributed fixed-time cooperative control system restores the frequency, regulates the average voltage to the nominal value, and achieves accurate power sharing. For the state of charge balancing, a fixed-time observer is proposed to estimate the average state of charge of a battery using only information from neighbors. Based on the estimated value, a local fixed-time sliding mode control is applied to achieve the balanced state of charge. Due to robustness of the fixed-time control strategy, the balanced state of charge can be maintained despite intermittent photovoltaic generation and variable loads. The Artstein's transformation is applied to ensure the stability of the time delayed system. The dynamic performance is verified with an RTDS Technologies real-time digital simulator, using switching converter models, nonlinear lead-acid battery models, photovoltaic generation, and communication delays in a European benchmark microgrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.