Abstract

We study the evolution of vortex sheets according to the Birkhoff-Rott equation, which describe the motion of sharp shear interfaces governed by the incompressible Euler equation in two dimensions. In a recent work, the authors demonstrated within this context a marginal linear stability of circular vortex sheets, standing in sharp contrast with classical instability of the flat vortex sheet, which is known as the Kelvin-Helmholtz instability. This article continues that analysis by investigating how non-linear effects induce singularity formation near the circular vortex sheet. In high-frequency regimes, the singularity formation is primarily driven by a complex-valued, conjugated Burgers equation, which we study by modifying a classical argument from hyperbolic conservation laws. This provides a deeper understanding of the mechanisms driving the breakdown of circular vortex sheets, which are observed both numerically and experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call