Abstract

AbstractWe consider a class of singular Sturm‐Liouville problems with a nonlinear convection and a strongly coupling source. Our investigation is motivated by, and then applied to, the study of transonic gas flow through a nozzle. We are interested in such solution properties as the exact number of solutions, the location and shape of boundary and interior layers, and nonlinear stability and instability of solutions when regarded as stationary solutions of the corresponding convective reaction‐diffusion equations. Novel elements in our theory include a priori estimate for qualitative behavior of general solutions, a new class of boundary layers for expansion waves, and a local uniqueness analysis for transonic solutions with interior and boundary layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.