Abstract

When a matched filter is used for detecting a weak target in a cluttered background (such as a gaseous plume in a hyperspectral image), it is important that the background clutter be well-characterized. A statistical characterization can be obtained from the off-plume pixels of a hyperspectral image, but if on-plume pixels are inadvertently included, then that background characterization will be contaminated. In broad area search scenarios, where detection is the central aim, it is by definition unknown which pixels in the scene are off-plume, so some contamination is inevitable. In general, the contaminated background degrades the ability of the matched-filter to detect that signal. This could be a practical problem in plume detection. A linear analysis suggests that the effect is limited, and actually vanishes in some cases. In this study, we take into account the Beer's Law nonlinearity of plume absorption, and we investigate the effect of that nonlinearity on the signal contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.