Abstract
The nonlinear evolution of the diocotron instability of a planar electron strip is investigated analytically by means of the nonlinear shearing mode for the solution of the initial and boundary value problems. The method is based on the sheared spatial coordinates which account for the motion of electron flow in the electrostatic field of the unstable diocotron modes in addition to the unperturbed sheared motion of the electron flow on the transformed shear coordinates. The time evolutions are studied by the solution of the initial and boundary value problems. The obtained solutions for the perturbed electrostatic potential include two nonlinear effects—the effect of the distortion of the boundaries of the planar electron strip and the effect of the coupling of the sheared nonmodal diocotron modes. It was proved by a two-dimensional particle-in-cell simulation that the developed theory is valid as long as the distortion of the boundaries of the basic shear flow does not change the frequency and growth rate of the linear diocotron instability in the transformed coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.