Abstract
This paper aims at investigating optimality conditions in terms of E-optimal solution for constrained multi-objective optimization problems in a general scheme, where E is an improvement set with respect to a nontrivial closed convex point cone with apex at the origin. In the case where E is not convex, nonlinear vector regular weak separation functions and scalar weak separation functions are introduced respectively to realize the separation between the two sets in the image space, and Lagrangian-type optimality conditions are established. These results extend and improve the convex ones in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.