Abstract
This paper is concerned with the existence and stability of solutions of a class of semilinear nonautonomous evolution equations. A procedure is discussed which associates to each nonautonomous equation the so‐called evolution semigroup of (possibly nonlinear) operators. Sufficient conditions for the existence and stability of solutions and the existence of periodic oscillations are given in terms of the accretiveness of the corresponding infinitesimal generator. Furthermore, through the existence of integral manifolds for abstract evolutionary processes we obtain a reduction principle for stability questions of mild solutions. The results are applied to a class of partial functional differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.