Abstract

Three-phase inverters for photovoltaic grid-connected applications typically require some form of grid voltage phase-angle detection in order to properly synchronize to the grid and control real and reactive power generation. Typically, a phase-locked loop scheme is used to determine this real-time phase angle information. However, in the present work, a novel method is proposed whereby the phase angle of the grid can be accurately identified solely via the grid current feedback. This phase-angle observer is incorporated into a current controller which can manage the real and reactive power of the grid-connected PV inverter system. Moreover, the maximum power point of the photovoltaic arrays is achieved without using a DC–DC converter. The proposed method achieves the grid current and DC-link voltage control objectives without the knowledge of the grid information and without the need for a cascaded control scheme. The design of this combined observer/controller scheme is motivated and validated via a Lyapunov stability analysis. The experimental setup is prototyped utilizing a real-time Typhoon HIL 603 and National Instrument cRIO embedded controller in order to validate the proposed observer/controller scheme under different operation scenarios such as irradiation changes, frequency changes, reactive power injection, and operation with a distorted grid. The results show that the DC-link voltage and the active and reactive powers are well regulated from the proposed control scheme without the measurement of the grid phase and frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.