Abstract

Self-organization evolution of a population is studied considering generalized reaction-diffusion equations. We proposed a model based on non-local operators that has several of the equations traditionally used in research on population dynamics as particular cases. Then, employing a relatively simple functional form of the non-local kernel, we determined the conditions under which the analyzed population develops spatial patterns, as well as their main characteristics. Finally, we established a relationship between the developed model and real systems by making simulations of bacterial populations subjected to non-homogeneous lighting conditions. Our proposal reproduces some of the experimental results that other approaches considered previously had not been able to obtain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.