Abstract
Self-organization evolution of a population is studied considering generalized reaction-diffusion equations. We proposed a model based on non-local operators that has several of the equations traditionally used in research on population dynamics as particular cases. Then, employing a relatively simple functional form of the non-local kernel, we determined the conditions under which the analyzed population develops spatial patterns, as well as their main characteristics. Finally, we established a relationship between the developed model and real systems by making simulations of bacterial populations subjected to non-homogeneous lighting conditions. Our proposal reproduces some of the experimental results that other approaches considered previously had not been able to obtain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.