Abstract
Abstract Time series of displacement data from unstable rock slopes contain ‘hidden’ information about the dynamics of slope failure. This information cannot be found when using the current linearly causal paradigm based on analytical methods, but is revealed when numerical and graphical methods from the toolbox of the Nonlinear Sciences are applied. The occurrence of fractal patterns, which suggests a qualitative difference between intrinsic slope movement dynamics of time series from the near-to-equilibrium and the far-from-equilibrium dynamical states of slope failure systems, is an example of such a ‘hidden’, diagnostically important indicator. It helps to identify the stage of immediate danger of rock fall occurrence, just in time to launch an efficient early warning. Phase portrait and correlograms of time series proved to be suitable for earlier revelation of transitions from the near-to-equilibrium to the far-from-equilibrium dynamical states, as well as for helping to distinguish between intrinsic slope movement dynamics and climatically driven reversible deformation activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.