Abstract
Cubic Schrodinger equations with small initial data (or small nonlinearity) and their spectral semi-discretizations in space are analyzed. It is shown that along both the solution of the nonlinear Schrodinger equation as well as the solution of the semi-discretized equation the actions of the linear Schrodinger equation are approximately conserved over long times. This also allows us to show approximate conservation of energy and momentum along the solution of the semi-discretized equation over long times. These results are obtained by analyzing a modulated Fourier expansion in time. They are valid in arbitrary spatial dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.