Abstract

The presentation is devoted to the theoretical investigation of nonlinear scattering of ultrashort electromagnetic pulses (USP) on two-level quantum system. We consider the scattering of several types of USP, namely, so called corrected Gaussian pulse (CGP) and cosine wavelet pulse. Such pulses have no constant component in their spectrum in contrast with traditional Gaussian pulse. It should be noted that the presence of constant component in the limit of ultrashort pulse durations leads to unphysical results. The main purpose of the present work is the investigation of the change of pulse temporal shape after scattering as a function of initial phase at different distances from the target. Numerical calculations are based on the solution of Bloch equations and expression for scattering field strength via dipole moment of two-level system exposed by the action of incident USP. In our calculation we also account for the influence of refracting index of the air on electric field strength in the pulse after scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.