Abstract

Abstract Application of the stability theorems for multilayer quasigeostrophic flows reveals that the three-layer model may be nonlinearly unstable while in linearly subcritical conditions, the instability being then due to explosive resonant interaction of Rossby waves. This contrasts with the Phillips two-layer model for which linear theory suffices to explain any instability and motivates this study of the nonlinear saturation of instability in the three-layer model. A rigorous bound on the disturbance eddy energy is calculated using Shepherd's method for a wide range of basic shear and channel width. The method is applied using stable basic flows whose stability is established by either Arnol'd's first or second theorem. For flows unstable through explosive interaction only, the bound indicates that the disturbance energy can attain as much as 40% of the basic flow energy, the maximum disturbance energy being obtained for flows close to linear instability. With regard to linear instability, an importa...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.