Abstract

The nonlinearly coupled Vlasov-Maxwell ion-plasma field equations are solved exactly for a transversely uniform subgroup of rotational modes induced by a uniform axial magnetic field. The ion orbits in momentum space are bipolar doubly periodic eigenfunctions of ion proper time, obtained in closed form as the difference between two doubly quasi-periodic Weierstrass zeta functions. The ion orbits in position space are helical-spiral doubly quasi-periodic functions of ion proper time, expressible simply in terms of doubly quasi-periodic Weierstrass sigma functions. The complete ion distributions are flexible functions of six constants of the ion motion: wave-frame ion energy, transverse gyro center, an inner Hamiltonian correlating wave-frame ion momentum with wave-frame axial position, and both first and second axial integration constants. A rotary electromagnetic plane wave propagates along the axial magnetic field with complex cisoidal dependence upon wave-frame axial position. The eigenvalue determination intricately interrelates the wave propagation vector, the wave amplitude, the axial magnetic field, the double periods, and the bipole separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.