Abstract

Advanced battery management systems rely on accurate cell- or module-level state-of-charge (SOC) information for effective control, monitoring, and diagnostics. Electrochemical models provide arguably the most accurate and detailed information about the SOC of lithium-ion cells. In this brief, two nonlinear observer designs are presented based on a reduced order electrochemical model. Both observers consist of a Luenberger term acting on nominal errors and a variable structure term for handling model uncertainty. Using Lyapunov’s direct method, the design of the Luenberger term in each observer is formulated as a linear matrix inequality problem, whereas the variable structure term is designed assuming uncertainty bounds. Simulation and experimental studies are included to demonstrate the performance of the proposed observers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.