Abstract

Two approaches to tackle the nonlinear robust stability problem of an aerospace system are compared. The first employs a combination of the describing function method and $\mu $ analysis, while the second makes use of integral quadratic constraints (IQCs). The model analyzed consists of an open-loop wing’s airfoil subject to freeplay and linear time-invariant parametric uncertainties. The key steps entailed by the application of the two methodologies and their main features are critically discussed. Emphasis is put on the available insight on the nonlinear postcritical behavior known as limit cycle oscillation. It is proposed a strategy to apply IQCs, typically used to find absolute stability certificates, in this scenario, based on a restricted sector bound condition for the nonlinearity. Another contribution of this paper is to understand how the conservatism usually associated with the IQCs multipliers selection can be overcome by using information coming from the first approach. Nonlinear time-domain simulations showcase the prowess of these approaches in estimating qualitative trends and quantitative response’s features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.