Abstract

A theoretical and computational model has been developed for the nonlinear motion of an inextensible beam undergoing large deflections for cantilevered and free–free boundary conditions. The inextensibility condition was enforced through a Lagrange multiplier which acted as a constraint force. The Rayleigh–Ritz method was used by expanding the deflections and the constraint force in modal series. Lagrange's equations were used to derive the equations of motion of the system, and a fourth-order Runge–Kutta solver was used to solve them. Comparisons for the cantilevered beam were drawn to experimental and computational results previously published and show good agreement for responses to both static and dynamic point forces. Some physical insights into the cantilevered beam response at the first and second resonant modes were obtained. The free–free beam condition was investigated at the first and third resonant modes, and the nonlinearity (primarily inertia) was shown to shift the resonant frequency significantly from the linear natural frequency and lead to hysteresis in both modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.