Abstract

Nonlinear optical properties of Basic Violet 16 dye solution in water are studied employing different optical techniques. Experiments are performed using the second harmonic of a continuous Nd-Yag laser beam at 532 nm wavelength and 100 mW power. The effect of nonlinearity of Basic Violet 16 dye in broadening the laser beam is observed. The optical limiting behavior is investigated by measuring the transmission of the samples. The third-order nonlinearity, χ 3 of Basic Violet 16 dye, is measured using Z-scan data. The nonlinear absorption coefficient is calculated using the open aperture Z-scan data, while its nonlinear refractive index is measured using the closed aperture Z-scan data. All experiments are done for different concentrations and thicknesses of Basic Violet 16 dye solution. The effect of intensity of input laser beam on the nonlinear susceptibility is studied experimentally. Results indicate that Basic Violet 16 dye is a potential candidate for low-power optical limiting applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call