Abstract

In this paper, we study the nonlinear response of the nonlinear mass-spring model with nonsmooth stiffness. For this purpose, we take as prototype model, a system that consists of the double-well smooth potential with an additional spring component acting on the system only for large enough displacement. We focus our study on the analysis of the homoclinic orbits for such nonlinear potential for which we observe the appearance of chaotic motion in the presence of damping effects and an external harmonic force, analyzing the crucial role of the linear spring in the dynamics of our system. The results are shown by using both the Melnikov analysis and numerical simulations. We expect our work to have implications on problems concerning the suspension of vehicles, among others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.