Abstract

The fourth-rank hypermagnetizability tensor of the benzene molecule has been evaluated at the coupled Hartree-Fock level of accuracy within the conventional common-origin approach, adopting gaugeless basis sets of increasing size and flexibility. The degree of convergence of theoretical tensor components has been estimated allowing for two different coordinate systems. It is shown that a strong magnetic field perpendicular to the plane of the molecule causes a distortion of the electron charge density, which tends to concentrate in the region of the C-C bonds. This charge contraction has a dynamical origin, and can be interpreted as a feedback effect in terms of the classical Lorentz force acting on the electron current density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.