Abstract

This paper deals with nonlinear response of smart two-phase nanocomposite plates with surface-bonded piezoelectric layers under a combined mechanical, thermal and electrical loading. The governing equations of the carbon nanotube reinforced composite plate are derived based on first order shear deformation plate theory (FSDT) and von Kármán geometric nonlinearity. The material properties of the nanocomposite host are assumed to be graded in the thickness direction. The single-walled carbon nanotubes (SWCNTs) are assumed aligned, straight and a uniform layout. The Galerkin method is employed to derive the nonlinear governing equations of the problem. A perturbation scheme is employed to determine the nonlinear vibration response and the nonlinear natural frequencies of the plates with immovable simply supported boundary conditions. Post-buckling load–deflection and maximum transverse load–deflection relations have been obtained for the plate under consideration. The effects of the applied voltage, temperature change, plate geometry, and the volume fraction and distribution pattern of the SWCNTs on the linear and nonlinear natural frequencies of the smart two-phase composite plates are investigated through a detailed parametric study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.