Abstract
Crop yields in sub-Saharan Africa remain stagnant at 1 ton ha-1 , and 260 million people lack access to adequate food resources. Order-of-magnitude increases in fertilizer use are seen as a critical step in attaining food security. This increase represents an unprecedented input of nitrogen (N) to African ecosystems and will likely be accompanied by increased soil emissions of nitric oxide (NO). NO is a precursor to tropospheric ozone, an air pollutant and greenhouse gas. Emissions of NO from soils occur primarily during denitrification and nitrification, and N input rates are a key determinant of emission rates. We established experimental maize plots in western Kenya to allow us to quantify the response function relating NO flux to N input rate during the main 2011 and 2012 growing seasons. NO emissions followed a sigmoid response to fertilizer inputs and have emission factors under 1% for the roughly two-month measurement period in each year, although linear and step relationships could not be excluded in 2011. At fertilization rates above 100kgNha-1 , NO emissions increased without a concomitant increase in yields. We used the geos-chem chemical transport model to evaluate local impacts of increased NO emissions on tropospheric ozone concentrations. Mean 4-hour afternoon tropospheric ozone concentrations in Western Kenya increased by up to roughly 2.63ppbv under fertilization rates of 150kgNha-1 or higher. Using AOT40, a metric for assessing crop damage from ozone, we find that the increased ozone concentrations result in an increase in AOT40 exposure of approximately 110ppbh for inputs of 150kgNha-1 during the March-April-May crop growing season, compared with unfertilized simulations, with negligible impacts on crop productivity. Our results suggest that it may be possible to manage Kenyan agricultural systems for high yields while avoiding substantial impacts on air quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.