Abstract
Nonintegrable systems thermalize, leading to the emergence of fluctuating hydrodynamics. Typically, this hydrodynamics is diffusive. We use the effective field theory (EFT) of diffusion to compute higher-point functions of conserved densities. We uncover a simple scaling behavior of correlators at late times, and, focusing on three and four-point functions, derive the asymptotically exact universal scaling functions that characterize nonlinear response in diffusive systems. This allows for precision tests of thermalization beyond linear response in quantum and classical many-body systems. We confirm our predictions in a classical lattice gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.