Abstract

In this effort, the nonlinear responses and stability of a spindle system supported by ball bearings are presented. The dynamics of this system is described by a set of second order differential equations with a nonlinear piecewise smooth force. The Floquet theory is applied to investigate the stability of the periodic solution. Due to the loss of contact between the raceways and balls in the ball bearing, the bending of the frequency response curves switch to the left at the weak resonance region, which is similar to the frequency response curves of a system with a soft spring. With the decrease of the bearing clearance, the bending of the frequency response curves switch to the right, which is similar to the frequency response curves of a system with a hard spring. Increase of the frequency ratio, the bending of frequency response curves transforms from left to right. The route to chaos through a period doubling process is also observed in this spindle-bearing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call