Abstract

An axisymmetric tube with a variable cross-sectional area, closed at both ends, containing a polytropic gas is oscillated parallel to its axis at or near a resonant frequency. The resonant gas oscillations in an equivalent tube of constant cross-section contain shocks. We show how cone, horn and bulb resonators produce shockless periodic outputs. The output consists of a dominant fundamental mode, where its amplitude and detuning are connected by a cubic equation – the amplitude–frequency relation. For the same gas, a cone resonator exhibits a hardening behaviour, while a bulb resonator may exhibit a hardening or softening behaviour. These theoretical results agree qualitatively with available experimental results and are the basis for resonant macrosonic synthesis (RMS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call