Abstract
The problem of inelastic electron interaction in a perfectly pure superconductor with a longitudinal sound impulse is considered. It is shown that the problem reduces to the equivalent one of elastic scattering by the static potential, and the sound absorption is expressed in terms of the reflection coefficient of this scattering. The classical and quantum properties of the scattering are studied and the phase region in which new excitations are created is indicated. A formula is derived that expresses the density matrix of the excitations created in terms of the exact scattering matrix of an impulse. The quasiclassical creation of excitations by a smooth-shaped impulse is investigated with regard to both overbarrier and underbarrier processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.