Abstract

This paper considers the question of global in time existence and asymptotic behavior of small-data solutions of nonlinear dispersive equations with a real potential $V$. The main concern is treating nonlinearities whose degree is low enough as to preclude the simple use of classical energy methods and decay estimates. In their place, we present a systematic approach that adapts the space-time resonance method to the non-Euclidean setting using the spectral theory of the Schroedinger operator $-\Delta+V$. We start by developing tools of independent interest, namely multilinear analysis (Coifman-Meyer type theorems) in the framework of the corresponding distorted Fourier transform. As a first application, this is then used to prove global existence and scattering for a quadratic Schroedinger equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.