Abstract

In this paper, the equivalent circuit of the non-autonomous Josephson junction (JJ) is presented and the effect of the proper frequency on the phase ϕ is studied. We also study nonlinear resonance phenomena in the oscillations of a modified Josephson junction (MJJ). These oscillations are probed through a system of nonlinear differential equations and the multiple time scale method is employed to investigate all different types of resonance that occur. The results of primary, superharmonic and subharmonic resonances are obtained analytically. We show that the system exhibits hardening and softening behaviors, as well as hysteresis and amplitude hopping phenomena in primary and superharmonic resonances, and only the hysteresis phenomenon in subharmonic resonance. In addition, the stabilities and the steady state solutions in each type of resonances are kindly evaluated. The number of equilibrium points that evolve with time and their stabilities are also studied. Finally, the equations of motion are numerically integrated to check the correctness of analytical calculations. We further show that the dynamics of the MJJ is strongly influenced by its parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.