Abstract

It has been shown that nonlinear near-field optical resonances occur in diatomic nanostructures consisting of identical or different two-level atoms in the presence of a radiation field when the dipole-dipole interaction is taken into account. The frequencies of these resonances depend strongly on the intensity of the external optical radiation, on the initial conditions, on the polarization of the external field with respect to the axis of the nanostructure, and on the interatomic distance. The interatomic interaction is taken into account beyond perturbation theory. For this reason, the effective polarizabilities of the atoms of the nanostructure are expressed in terms of the polynomials of both the interatomic distance and the electric field strength of the external optical wave. A “falling tower” effect that is caused by the nonlinear behavior of the local dipole moments of atoms in the nanostructure is predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.