Abstract

We demonstrate the enhancement of the resolution of a fiber optical sensor using all-optical signal processing. By sweeping the frequency of a tunable laser across a fiber Bragg grating, a signal corresponding to the reflection spectrum of the FBG is generated. If another laser with fixed power and frequency is launched into a highly nonlinear fiber along with the FBG-shaped signal, the Kerr effect gives rise to a number of frequency sidebands, where the power in each of the sidebands is proportional an integer exponent of the signal and pump powers. By filtering out particular sidebands, this potentiation effect reduces the width of the FBG-shaped signal, making shifts in its central wavelength easier to distinguish. We report a maximum resolution enhancement factor of 3.35 obtained by extracting the n = -4 order sideband, and apply resolution enhancement to improve the resolution of an FBG based temperature sensor. The method described in this paper can be applied to existing fiber based sensors and optical systems to enhance their resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call