Abstract

Bursting of midbrain dopamine (DA) neurons is believed to represent an important reward signal that instructs and reinforces goal-directed behaviors. In DA neurons, many afferents, including cholinergic and glutamatergic inputs, induce bursting, and it is suggested that a synergy exists between these afferents in bursting induction. However, the underlying mechanisms of the role and the synergy of muscarinic receptors (mAChRs) and NMDA receptors (NMDARs) in bursting induction remain unclear. Present work bestowed analysis using a mathematical model of DA neurons to demonstrate the underlying mechanisms. Activation of mAChRs, leading to rapid translocation of TRPC channels to cell surface, recruited -activated nonspecific (CAN) current ( ), meanwhile NMDARs excitation triggered influx, which induced the positive feedback loop of and , respectively, yielded a robust ramping depolarization with a superimposed high-frequency spiking. In some DA cells, neither NMDARs nor mAChRs induced positive feedback loop unless they were activated simultaneously to induce bursting. Our experimental results verified those theoretical findings. These together unveil the underlying mechanisms of the role and synergy of mAChRs and NMDARs in bursting induction emerge from the nonlinear relationship between influx and . Given the diverse and complex nature of neural circuitry and the DA neuron heterogeneity, our work provides new insights to understand specific afferents, the synergy between those afferents, and the differences in intrinsic excitability to be integrated by the bursting to accurately characterize the dopamine signals in the valances of reward and reinforcement, and a broad spectrum of neuropsychiatric disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.