Abstract
We consider nonlinear heteroscedastic single‐index models where the mean function is a parametric nonlinear model and the variance function depends on a single‐index structure. We develop an efficient estimation method for the parameters in the mean function by using the weighted least squares estimation, and we propose a “delete‐one‐component” estimator for the single‐index in the variance function based on absolute residuals. Asymptotic results of estimators are also investigated. The estimation methods for the error distribution based on the classical empirical distribution function and an empirical likelihood method are discussed. The empirical likelihood method allows for incorporation of the assumptions on the error distribution into the estimation. Simulations illustrate the results, and a real chemical data set is analyzed to demonstrate the performance of the proposed estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.