Abstract

The capability to dynamically control the nonlinear refractive index of plasmonic suspensions may enable innovative nonlinear sensing and signaling nanotechnologies. Here, we experimentally determine the effective nonlinear refractive index for gold nanorods suspended in an index matching oil aligned using electric fields, demonstrating an approach to modulate the nonlinear optical properties of the suspension. The nonlinear optical experiments were carried out using a Hartmann-Shack wavefront aberrometer in a collimated beam configuration with a high repetition rate femtosecond laser. The suspensions were probed at 800 nm, overlapping with the long-axis absorption peak of the nanorods. We find that the effective nonlinear refractive index of the gold nanorods suspension depends linearly on the orientational order parameter, S, which can be understood by a thermally induced nonlinear response. We also show the magnitude of the nonlinear response can be varied by ∼ 60%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.