Abstract

Composite thin films Au:BaTiO3, comprising nanometer-sized gold particles embedded in barium titanate matrices, were synthesized on MgO (100) substrates with the pulsed laser deposition technique. The nanostructure of the films and the size distributions of the Au particles were analyzed by high-resolution transmission electron microscopy. Crystal lattice fringes from the Au nanocrystals and the BaTiO3 matrices were observed. The nonlinear optical properties of the Au:BaTiO3 films were measured with the z-scan method at a wavelength of 532 nm, which was closed to the surface plasmon resonance of nanoscale Au particles. The features of the closed-aperture z-scan transmittance curves were affected by the ratio, which increased greatly at a high metal concentration, of the imaginary part to the real part of the third-order nonlinear susceptibility chi(3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.