Abstract

For the present study, setting Strouhal number as the control parameter, we perform numerical simulations for the flow over oscillating NACA-0012 airfoil at a Reynolds number of 1000. This study reveals that aerodynamic forces produced by oscillating airfoils are independent of the initial kinematic conditions suggesting the existence of limit cycle. Frequencies present in the oscillating lift force are composed of the fundamental harmonics and its odd harmonics. Using these numerical simulations, we analyze the shedding frequencies close to the excitation frequencies. Hence, considering it as a primary resonance case, we model the unsteady lift force with a modified van der Pol oscillator. Using the method of multiple scales and spectral analysis of the steady-state computational fluid dynamics (CFD) solutions, we estimate the frequencies and the damping terms in the reduced-order model (ROM). We show the applicability of this model to all planar motions of the airfoil; heaving, pitching, and flapping. With increasing the Strouhal number, the nonlinear damping terms for all types of motion approach similar magnitudes. Another important aspect in one of the proposed model is its ability to capture the time-averaged value of the aerodynamic lift force. We also notice that increase in the magnitude of the lift force is due to the effect of destabilizing linear damping parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call